Fraunhofer Translational Center Regenerative Therapies TLC-RT Materials meets Biology meets Engineering

Bioreactors and lab automation

"We believe engineering empowers scientific advancements."

Dipl. Ing. Thomas Schwarz Prof. Jan Hansmann

3D In vitro testsystems

"We believe in challenging the status quo of what can be tested without the use of animal models."

Dr. Daniela Zdzieblo Dr. Christian Lotz

Biomaterials

"We believe in realizing complex and challenging biomaterial property profiles."

Dr. Sofia Dembski Dr. Jörn Probst

Fraunhofer Translational Center Regenerative Therapies TLC-RT Materials meets Biology meets Engineering

Bioreactors and lab automation

"We believe engineering empowers scientific advancements."

Dipl. Ing. Thomas Schwarz Prof. Jan Hansmann

In vitro testsystems

"We believe in challenging the status quo of what can be tested without the use of animal models."

Dr. Daniela Zdzieblo Dr. Christian Lotz

Biomaterials

"We believe in realizing complex and challenging biomaterial property profiles."

Advancing Biomedical Research

Innovative In Vitro Models Utilizing Primary Cells, iPSCs, and Organoids

Human in vitro tissues

- Skin
- Eye
- Intestine
- Airways
- Innervation
- Neurovascular Unit

New approach methods

- Risk assessment
- Efficacy testing
- Preformulating evaluation
- Consultancy
- Customized assays

Tissue environment interaction

- Wound healing
- Tumor development
- Infection studies
- Genetic diseases
- Material
- Immune mediated diseaes

In vitro testsystems Portfolio

Blood-Brain-Barrier Eye	BBB
Oral mucosa Airway (Trachea, nasal epithemlium)	
Skin (Epidermis, full-thickness-skin, SkinVaSc®)	
GI-tract	freepik

Translational Center Regenerative Therapies (TLC-RT) – pre-clinical research

Page 7 10.02.2025 © Fraunhofer

Key benefits

Enhanced Predictive Accuracy

Cost efficiency meets Customization and Flexibility

Reduction of Animal Testing

Intestine

Modeling human infections in vitro at multicellular level

Method

- Primary organoid-based tissue model
- Infection with Salmonella Typhimurium

Results

- Interaction of STm flagella with microvilli
- Membrane ruffling
- Discreet invasion mechanism
- Reassembling all invasion steps

Applications

Assessment of compounds

Reference:

[1] Däullary et al. 2023. doi: <u>https://doi.org/10.1080/19490976.2023.2186109</u>
[2] Damigos et al. 2025 doi: <u>https://doi.org/10.1002/advs.202411233</u>

Eye

Eye irritation test in a single in vitro method

Method

- Cornea epithelial model with **primary cells**
- Non-destructive impedance spectroscopy to analyze eye irritation

Results

- Distinguish between all GHS categories for eye irritation in one in vitro test
- Identification of reversible effects
- Formulation testing
- Transport studies
- Analysis of cell viability

Applications

- Eye Irritation test
- Toxicological analysis of reversible effects

Reference:

[1] Lotz et al. 2018. DOI: <u>10.1038/s41598-018-33118-2</u>

[2] Knetzger et al. 2024. DOI: https://doi.org/10.1007/s00204-024-03940-x

Skin

Human organotypic models of Malignant Melanoma

- models of various complexity (A, B)
- reflecting multiple driver mutations and potential targets
- reflecting different stages of tumor formation (A'-A", B'-B")
- reflecting not only the physiological but also correlating with the in-vivo situation
- mimicking TME-interplay
- preclinical test system for e.g. targeted therapies (like BRAF-/MEK- inhibitors)
- Establishment of **non-invasive** detection methods

Leikeim A*, **Wußmann M***, Schmidt FF* et al.: A preclinical model of cutaneous melanoma based on reconstructed human epidermis. Sci Rep 12, 16269 (2022)

Wußmann M* et al.: In Model, In Vitro and In Vivo Killing Efficacy of Antitumor Peptide RDP22 on MUG-Mel2, a Patient Derived Cell Line of an Aggressive Melanoma Metastasis. Biomedicines 2022; 10(11):2961

